[ домой ] [ следующий ] [ начало главы ] [ предыдущий ] [ содержание ]

4.11. Как представляются в компьютере целые числа?

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака

Обычно  занимают  в  памяти  компьютера  один  или  два  байта.     В  однобайтовом  формате  принимают  значения  от  000000002   до   111111112.     В двубайтовом формате — от  00000000 000000002   до   11111111 111111112.
 

Диапазоны значений целых чисел без знака

Формат числа в байтах  Диапазон 
Запись с порядком Обычная запись
1 0 ... 28–1 0 ... 255
2 0 ... 216–1 0 ... 65535

Примеры:

а) число 7210 = 10010002 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:


 
 

Целые числа со знаком

Обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа.
 

Диапазоны значений целых чисел со знаком

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
1 –27 ... 27–1  –128 ... 127 
2 –215 ... 215–1  –32768 ... 32767
4 –231 ... 231–1  –2147483648 ... 2147483647

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: 
прямой код,   обратный код,   дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково  —  двоичными кодами с цифрой 0 в знаковом разряде. Например:
 

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:
 

2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:
 

3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:
 

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

[ домой ] [ следующий ] [ начало главы ] [ предыдущий ] [ содержание ]